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Program Overview

Time line

Start Date: October 2013
End Date: March 2016
Status: Completed

Budget
Total Project Funding:

S 3,785,088

Cost Share:

$ 757,018

Funding Received:
$ 1,433,992 (Envia)

Barriers

 Meeting PHEV power specifications

* Loss of power with cycling

* Cycle and calendar life
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Project Objectives - Relevance

Goals

Develop a high capacity cathode, and Si-SiO,-C based anode and integrate them and build
high capacity (0.25-40 Ah) pouch cells that exceed the ABR minimum target goals for PHEVs

Relevance Cell Targets

* ldentifying the root cause and
solving the DC-Resistance rise at

. Specific Discharge Pulse Power W/kg 800
low SOC’s, enabling the use of the
high-energy offered by HCMR™ Lj- Discharge Pulse Power Density W/L 1600
rich cathode materials Specific Regen Pulse Power W/kg 430
Regen Pulse Power Density W/L 860
Project Tasks Recharge Rate NA c/3
* Material development Specific Energy Wh/kg 200
* Nanocoating engineering Energy Density Wh/L 400
e Atomistic and cell-level modeling Calendar Life Years 10+
* Material scale-up Cycle Life (at 30° C with C/3 Cycles 5000
e La rge cell development Charge and 1C Discharge rates)
Operating Temperature Range °C -30to 452

e Large cell testing
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Importance of Cell DC-R/Power for Automotive Range
Voltage (V)
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Importance of Cell DC-R/Power for Automotive Range
Voltage (V)
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Importance of Cell DC-R/Power for Automotive Range
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Motivation: Reduction of DC-R by Surface Coatings

200
XLE2 DC-R measurement: HCMR™ vs. Graphite
175 -
150 T . L)
Higher ASI (resistance) HCMR™-XLE2 material has
125 CLE2 translates to lower power only ~75% energy extracted
‘g Carbon-coated from lower resistance
g, 100 1 regions
3 \ 75 Q*cm? used as a guideline to determine &
< ] > % of usable energy ¢ Nevertheless, the same
chemistry with a carbon-
50 - coating increases usable
energy from ~75% to >82%
25
VAR
0 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

SPC [%]

It is possible to increase usable energy by engineering
surface coating chemistries and processes!
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Project Development Roadmap

Atomistic modeling _
Nanocoating Challenges: o ,
- . * High resistance at beginning of life

§ D w L Composition - Lower power

S A PVD (ORNL) B * Resistance growth with cycling
= s o B V - Loss of power

—

T o m----- -+

Q>J Wet processing (Envia/LBNL

______ - . . .

Q Mechano-Chemical (Envia) g g2 a """ """ =" > Diagnostic studies

Q @ mememe——— - —_

b ~ALD (GM/Envia)y
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S HCMR™ cathode (Envia) Coating Coated HCMR™

O development
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8 Development (LBNL)

(Y} Si-C anode (Envia) f" . :
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Project Tasks & Timeline

Timeline
Task Sub Tasks
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Qs Q9 | Q10 | Q11
1. Composition Engineering #(XLE) *(XE)
2. Surface coating
i. LIPON
cathode ii. ALD ———
Development | i polymer —

iv. Carbon * —

3. Atomistic Modeling

4. Diagnostic studies *

Anode 1. Composition Engineering

Development |5 gijder Development

i

1. Cell Sizing Studies

cell 2. Electrochemical Modeling

_
Development |3 1~50 Ah Cell Builds (Internal) ﬁ

4. 1~50 Ah Final Cell Build
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Surface Modification on HCMR™M™-XLE Cathode

ASI [Q*cm2]

ASI [Q*cm2]

200
| LiPON coating does not prevent 175 - Al,O; (via ALD) does not prevent
increase in DC-R after 125 cycles increase in DC-R after 25 cycles on
T on HCMR™\-XLE2 cathode 150 1 HCMR™-XLE2 cathode

XLE2
XLE2 + 1 hr LiPON

XLE2
XLE2 + Al, O, (2 ALD cycles)

ASI [Q*cm?]
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SOC [%] ASI [%]
_ After 25 cycles, PEDOT:PSS-coated
HCMR™-XLE1 cathode shows lower
| usable energy than uncoated material
l XLE1 LiPON, Al,O, (via ALD), and polymer
| s e\ e, (ELTPEDOTIRSS (PEDOT:PSS) coatings on HCMR™-XLE
cm o o, . .
L, 25 vl did not prevent loss of usable energy
15t cycle
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Compositional Engineering

XP Cathodes

- XE1
/07 (lOWer L|2Mno3) ............. 7 (Uncoated)
.--= XE Cathodes :
' XLE Cathodes Envia’s aqueous
(higher Li,MnO,) ; nanocoating
i process
AN
) :
TR d .3 v
) 1
l’ )’\ 0.2 XE2
' y (nanocoated)

ASI [Q*cm2]
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XLE2

Carbon-coated

XLE2

DC-R measurement: HCMR™ vs, Graphite

75 Q*cm? used as a guideline to
determine % of usable energy
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Voltage [V]

4.6
4.4 -
4.2 -
4.0 -
3.8 A
3.6 - Anode: Li meta
3.4 - Temperature: 25°C
3, | Crate: C/10
30 - V-window: 4.6V-2.0V
28 - XLE2 | XE2
26 1| o SpCap | 226 | 209
24 | AvgV | 3.62 | 3.75
SpCap| 185 | 187
2.2 - 2C
o IAng |3.49 3.6|5 X.EZ- ! ).(LEZ
0 50 100 150 200 250 300
Specific Capacity [mAh/g]

PHEV cells demand high power — The
newly developed composition HCMR™-
XE is better or on-par in capacity at
high rates with higher average voltage
than HCMR™-XLE material.



L1PON-Coated XE2: E!

ectrochemical Properties

240

230 -~

Specific Capacity [mAh/g]

190 -

180

220 -

210 -

200 -

101

vs. Li vs. Li
100 -
X
= 99
.2
XE2 control 3 o3 -
1h LiPON <
2h LiPON g o
5h LiPON w o
7h LiPON
95 T T T T T
0 c/20 c/10 c/s c/3 1C 2C ‘ 0 10 20 30 40 50
C-Rate Cycle Number

* LiPON coated XE2 materials perform nearly identically to uncoated

* No improvement in capacity and average voltage — signifies no effective enhancement in DC-R

envia

LiPON coating does not improve rate-capability nor cycle-life.
Negative impact on Average Voltage at faster rates.

YatEME

60

13



ALD-Coated XE2: Electrochemical Properties

150

125

100

ASI [Q*cm2]
~J
(¥,

50

25

Uncoated
2 cycles Al,O; ALD + HT e HCMR™.-XE materials were coated with
5 cycles Al,O; ALD + HT Al O3 using ALD
* Anannealing step after the ALD coating was
performed to create a more uniform, robust
coating
* However, DC-R growth occurred on both
N uncoated and coated samples

> 75 Q*%cm?

251 eycle

1%t cycle

-

DC-R measurement:
HCMR™ vs. Graphite

10 20 30 40 50 60 70 80 S0 100
SOC [%]

HCMR™-XE ALD coating studies with High Temperature
treatment did not prevent DC-R growth after 25 cycles
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Diagnostics Studies

Section of model In situ XRD cell
electrode

In situ Raman cell

Working electrode
(sample)

Glass window

Kapton foil covered window
Electrodes / Electrolyte

MHES] —§

Sealed pouch bag (Ar atmosphere)
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STEM — Microscopic Analysis @ NCEM
& Super STEM, UK
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Study of Structure Using HAADF STEM 1maging
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A. K. Shukla et al. Nat Commun, vol. 6, p. 8711, Oct. 2015

ZA: [001]monoclinic
Bulk structure: Preliminary results obtained from HAADF STEM
analysis of XLE, XE and XP materials suggests that as Li and Mn
content is decreased, there is an increase in variation of lithium
content in the shared column present in monoclinic domains as

observed from [100] monoclinic zone axis.

* Surface structure: All three materials exhibited the presence of
spinel surface having the same orientation relationship with the
bulk structure and also with similar thickness (~2 nm).

The results indicate that the composition does not have an effect on
the thickness of this spinel layer, indicating that the bulk structure
might be more responsible in the reduction of DC-R with decrease
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Diagnostics — Spectroscopy & Electrochemical

*  Li+ diffusivity changes dramatic
below 3.8 V within a cycle
* No change of Li+ diffusivity in

— Cycle 7T
— Cycle 97 -
—_— Cycle 127 -
Cycle 157 Cycled
Cycle 207
s0p | —=—Cycle 100
E
]
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0 0
10 20 30 40 45 4 5
Voltage (V)

Z’ (Q cm?)

HCMR™ material with prolonged

cycling
EIS studies show increase in surface film thickness mainly due to loss in
particle contact.
EC analysis of HCMR™-XE and HCMR™-XLE cathodes show that DC-R is
caused by surface film buildup at lower states of charge
Cathode material diffusivity changes due to changes in the lattice
parameter during a single cycle.
“:“:u 15t cycle r Ni“;o\ 1 Z}%S%mel like structure :
«  Surface changes to a spinel like « ~ It jwl \ )ﬁ
structure. Changes in surface | /& 'ﬁt [ ‘.
transition metal activity. f‘e \\' f \ mlﬂ"J \‘ T e
*  Ni**/Ni?* redox reactions observed . V/\J/"/ Nl o '“l/ . 1‘1 .‘"v"{ oo |
during 1st cycle v/vf/j =v | a e T e e e e
K . ) s m’f\[ v : Raman shift (cm™) Raman shift (em”) Raman shift (cm ')
*  No Ni**/Ni?* redox reactions £ -J\// v |3 s30em —
/ v | 101 cycle |I s Mn-O, spinel
observed after 100 cycles N WN ke structure
e \\ J' h
Mé% 43v % MII .* F‘II | H«M
A \::: ! T
—v-fJ ocP k
0;\[( 300 400 500 EIJI!I TDG 3oV | “ - ‘4‘3?’ .
M Raman shift [cm ) :u:ma:mu‘:n"] " :m:: ml:em] ::mf"m":‘:m ”‘“ 17
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NE-XANES — HCMR™ XLE vs. XE

Intensity (a.u.)

Ni oxidation (a.u.)

15t cycle
2 16 20 24
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Ni Oxidation state (a.u.)

1-3 cycles

8320
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8340
Photon energy (eV)
XE e ® = st
i Lo mo 50th T
w0 00 @ 150th
o "E CC 0 0
20 46 2.0
Voltage (V)

XANES is an attractive
technique to compute the
average oxidation number
of transition metals as a
function of (1) applied
voltage and (2) cycle
number

Change in Ni oxidation
number from 2+ to 4+
when charging the cell to
4.6V

Behavior at each cycle is
more stable for the
HCMR™-XE2 material than
HCMR™-XLE?2.

HCMR™-XE2 cathode shows less irreversibility with respect to Ni
oxidation number profile compared to HCMR™-XLE2.
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Electrochemical Modeling

Schematic of a single unit cell

Li*

charge

discharge

Pseudo-2D model accounting for
variation in the field variables along
the thickness of the unit cell

Base model accounts for potential
gradients in solid and liquid (Ohm’s
law), concentration gradients in solid
and liquid (Fick’s law), and
intercalation reaction (Butler-Volmer
kinetics)

BERKELEY LAB

Separator

Model Inputs

Cell design parameters
Electrolyte properties from literature
Fitted parameters:

Solid state diffusivity
SEI film resistance
Reaction kinetics
Electrode tortuosity

19



Voltage (V)

Electrochemical Model Fit (HCMR™ XEI)

Half cell voltage as a function of time

Symbols: data

Line: model
cycle 2: y=0.2 cycle3:y=0.3 cycled:y=0.4
4.1 4 3.9
4.05 | 3.95 3.85
4% 3.9 %
. 3.8
3.95 3.85
3.9 3.8 375
3.85 3.75 3.7
3.8 3.7 3.65
0 60 120 180 240 300 360 0 60 120 180 240 300 360 0 60 120 180 240 300 360
cycle 5:y=0.5 cycle 7: y=0.7 cycle 8:y=0.8
3.85 3.8 39
3.8 3.7 Qg o

375 &

3.7
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3.6

0 60 120 180 240 300 360

36
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35 M
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Good agreement between model and experiment
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Solid-State Diffusional Resistance

2 . . . . .
, = " (_ d_U) Particle diffusional resistance trend similar to
3FLés Comax Ds \ dy DC-R, mainly responsible for increased DC-R
Daniel Baker and Mark Verbrugge, Journal of the H H H
Electrochemical Society, 160 (8), A1319-A1332 (2013) at IOW SOC (hlgh LI fraCt|On)
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Cathode Blends

Goal: Achieving 200 Wh/kg without using the high voltage capacity from HCMR™-XE

Mn-rich Cathode Ni-rich or Co Rich Cathode

Poor Safety

Cathode Blend High Cost
High DC-R with combined |*
Poor Electrode Density benefits

Low Average Voltage
Voltage Fade

HCMR™-XE exhibits low DC-R compared to HCMR™-XLE. However, the phase stability or loss of power
(increase in DC-R) with cycling is inevitable even in HCMR™-XE if operated at higher charge voltages
(>4.3V).

Blending HCMR™-XE with other cathode materials benefits with higher active, higher loading in the
electrode. This will enable a cell design which allows cell operation at lower charge voltages.

HCMR™-XE structure is maintained showing NO voltage fade (no phase change) when operated in
limited upper cut-off window.

Various cathode and anode blends were formulated to meet the ABR cell metrics and cells with the best
performing cell design were chosen for the final ABR cell deliverable to INL.

e o
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Design 1 — Energy Density and HPPC

Voltage (V)

(o]

.5

200 Wh/kg @ 1C

eerees |'"

BERKELEY LAB

4000

3500

HPPC study

Discharge

..:E; 3000
2
g 2500
a
= 2000
3
& 1500
‘g{ 1000
500 Target Specific Regen Pulse Power
0
0 10 20 30 40 50 60 70 80 90 100
50 100 150 200 250 .
Energy Density (Wh/kg) Depth of Discharge (%)
XE Cell
PHEV40 ‘
— . arter
Chracteristics Unit | ABR
RPTO
Targets
Design 1
Specific Discharge Pulse Power | W/kg 800
Discharge Pulse Power Density W/L 1600
Specific Regen Pulse Power W/kg 430
Regen Pulse Power density W/L 860
Specific Energy @ 1C Wh/kg 200
Energy Density @ 1C Wh/L 400
Calendar Life Years 10+ TBD
Cycle Life (C/3 ~ 1C) 5000 350
Operating Temperature °C (-30 ~+52) 25°C
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Designs 1 & 2 — Cycling Performance

100 _~\
T———
X Design 2 Design 1
S
§ 60
(V)
o
2
§ 40 , S =
m ‘
u a
20
25 Ah Pouch Cells
C/3-1C
O | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500
Cycle Number
* Met 200 Wh/kg with Designs 1 and 2
* Design 2 has poor cycle-life compared to Design 1
— 4 e Design 2 anode has higher Carbon content, but the
envid binder was not optimized for this formulation 24

YatEME




Design 4 — HPPC for 26 Ah Cell

50

4400
45
4000 Discharge
£ a0 3600
£ ¥
= 3200
% 35 E-
< = 2800
g <
£30 & 2400
2 3.75C Regen -
< ’='::’%:—Jj/ 3 2000
EE 25 g Regen
-% 5C Discharge -E 1600
2 ‘;.”.:Luou
800 g
15 Target Specific Regen Pulse Power
L e e L e e R R
10 0
0 10 20 40 50 60 70 80 90 100 o 10 20 30 D “t“h 'D_Wh ""% 0 80 %0 100
Depth of Discharge (%) epth of Discharge (%)
PHEVA40 7 XE Blend: Si-Gr
Chracteristics Unit | ABR Cells
Targets
Design 1 | Design 4
Specific Discharge Pulse Power | W/kg 800
Discharge Pulse Power Density W/L 1600
Specific Regen Pulse Power W/kg 430
Regen Pulse Power density W/L 860
Specific Energy @ 1C Wh/kg 200
Energy Density @ 1C Wh/L 400
= > i,;'; OAK Calendar Life Years 10+ TBD TBD
BERKELEY LAB Cycle Life (C/3 ~ 1C) 5000 350 TBD
_—r Operating Temperature °C (-30 ~+52)| 25°C 25°C

envia
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Design 4 — Cycling Performance (1)

N
(92
1

100 Coin-cell

o V]

N
o
1

80 -

105

103 +

1
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60 - - ]
f 101 + Coin-cell

99 T
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[ERY
o
|
Voltage Retention [%]

Cell Capacity [Ah]
Capacity Retention [%]

(92
1

0 100 200 300
Cycle Number

T O T T
0 100 200 300 0 100 200 300
Cycle Number Cycle Number

o

* Design 4, 25 Ah format cell shows capacity retention
>97% after ~190 cycles

* Design 4, 25 Ah format cell is surpassing the analogous
Design 4 tested in coin-cell format

* Voltage retention remains >99% after 300 cycles in the
coin-cell, suggesting no phase-change taking place in
the cathode material

"-_"“_‘H--‘__’/‘// o~ A OAK
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Design 4 — Cycling Performance (2)

—_ 200 - 100 — Coin-cell
2 < -~
= = 80 -
= 150 - S
§ 100 - 2 .
> § 40 -
- <)) [
2 50 1 S 20 |
Ll 1

0 T T 0 T T

0 100 200 300 0 100 200 300
Cycle Number Cycle Number

* Design 4, 25 Ah format cell shows energy retention
>97% after ~190 cycles

* Design 4, 25 Ah format cell is surpassing the analogous
Design 4 tested in coin-cell format
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Cycling Performance of Cell Deliverables

Capacity Retention [%]

100

80

60

40

20

Design 4
T———
Design 2 Design 1
25 Ah Pouch Cells
¢/3-1C
50 100 150 200 250 300 350 400 450 500

Cycle Number

Met 200 Wh/kg @ 1C with Designs 1, 2, and 4
Design 4 has optimized anode formulation,
showing the best cycle ability so far
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Conclusions

HCMR™-XLE cathode showed high capacity, yet very high DC-R which leads to poor power
characteristics.

HCMR™-XLE also showed large increase in resistance with cycling leading to further loss in usable
energy.

* Different nanocoatings on HCMR™-XLE such as Al,O;, LiPON, polymer etc. via different chemical
and physical deposition methods did not reduce DC-R nor did they prevent the increase in DC-R
with cycling.

* Composition engineering (from HCMR™-XLE to HCMR™-XE) provided an effective solution for the
DC-R challenge for the Li-rich NMC.

* The PFM binder was not compatible with Envia’s Si-based anode material resulting in
deterioration of the EC characteristics of the anode.

* (Cathode blends of HCMR™-XE with Ni-rich or Co-rich cathode materials were developed to
operate the cell in the optimized voltage window in order prevent any phase-change driven
energy loss with cycling.

* 26 Ah cells were built meeting ABR cell targets of 200 Wh/kg and 400 Wh/L without exposing the
cathode to deteriorating voltages.
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